

13 p.; il. (Série Plano de Aula; Matemática)

ISBN:

- 1. Ensino Fundamental Matemática 2. Área 3. Espaço e forma
- I. Título II. Série

CDU: 373.3:51

Plano de Aula

RADICALIZANDO

Nível de Ensino	Ensino Fundamental/ Anos finais			
Ano / Semestre	9º ano			
Componente Curricular	Matemática			
Tema	Números e operações			
Duração da Aula	3 aulas (50 min cada)			
Modalidade de Ensino	Educação Presencial			

OBJETIVOS

Ao final da aula, o aluno será capaz de:

- D26 EF2- MAT- Resolver problema com números racionais envolvendo as operações (adição, subtração, multiplicação, divisão, potenciação)
- D27- EF2-MAT- Efetuar cálculos simples com valores aproximados de radicais.
- D1.7 F2 TEC- Constatar alguma relação entre aspectos observáveis do objeto, semelhanças e diferenças, constâncias em situações, fenômenos, palavras, tipos de texto etc.

PRÉ-REQUISITOS DOS ALUNOS

• Saber utilizar os programas do *laptop* educacional: *KSpread, Firefox* e *KCalc* .

RECURSOS/MATERIAIS DE APOIO

- Laptop educacional;
- lousa;
- pincel.

GLOSSÁRIO

Radical(¹): adj m+f (lat radicale) 1 Pertencente ou relativo à raiz. 2 Que parte ou provém da raiz. 3 Relativo à base, ao fundamento, à origem de qualquer coisa; fundamental. (Mat) Sinal que se coloca antes das quantidades a que se deve extrair alguma raiz.

Número primo(²): Um número natural é um **número primo** quando ele tem exatamente dois divisores distintos: o número um e ele mesmo.

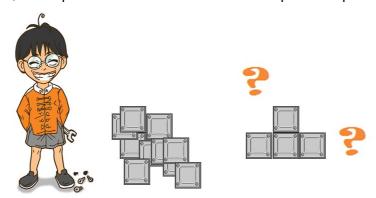
Fontes: (¹)http://michaelis.uol.com.br/moderno/portugues/index. php?lingua=portugues-portugues&palavra=radical

(²)http://pt.wikipedia.org/wiki/N%C3%BAmero_primo Acessado em 18/03/2012.

QUESTÕES PROBLEMATIZADORAS

Denki possui 25 placas quadradas para construir um painel também quadrado.

Quantas placas formarão o lado do maior quadrado possível?



Se Denki possuísse 30 placas seria possível construir um quadrado com todas as placas?

LEIS, PRINCÍPIOS, TEORIAS, TEOREMAS, AXIOMAS, FUNDAMENTOS, REGRAS...

Radiciação é a operação inversa da potenciação.

Observe a figura em vermelho à direita:

Esta imagem representa a **raiz cúbica de oito**. A expressão matemática $\sqrt[3]{8}$ é um **radical**, ela é composta pelo número **3** que é o **índice** da raiz, pelo símbolo da **radiciação** e pelo número **8** que é o seu **radicando**.

Mas o que significa a raiz cúbica de oito?

Relembrando as propriedades da **potenciação**, temos que **2**³ é igual a **2** · **2** · **2** que é igual a **8**. Partimos do número **2** e através de uma multiplicação de **3** fatores iguais a **2**, chegamos ao número **8**. Agora temos o caminho inverso, a **raiz cúbica de oito** é a operação que nos aponta qual é número que elevado a **3** é igual a **8**, ou seja, é a operação inversa da potenciação.

Raízes de Radicando Real com Índice Não Nulo

A raiz **enésima** de **a** é igual a **b**, se e somente se **b** elevado a **enésima** potência for igual a **a**:

$$abla \overline{a} = b \Leftrightarrow b^n = a \ com$$

$$\begin{cases}
a \ge 0, & b \ge 0 \ e \ n \ne 0 \\
ou \\
a < 0, & b < 0 \ e \ n \ impar
\end{cases}$$

LEIS, PRINCÍPIOS, TEORIAS, TEOREMAS, AXIOMAS, FUNDAMENTOS, REGRAS...

Não Existe a Raiz de um Radicando Negativo e Índice Par, Por quê?

Vamos tomar como exemplo a **raiz quadrada de menos 16** expressa por $\sqrt{-16}$. Segundo a definição temos:

$$\sqrt{-16} = b \Leftrightarrow b^2 = -16$$

Qual é o valor numérico que **b** deve assumir para que multiplicado por ele mesmo seja igual a -16?

$$b \cdot b = -16$$

Como sabemos na multiplicação de números reais ao multiplicarmos dois números, diferentes de zero, com o mesmo sinal, o resultado sempre será positivo, então não existe um número no **conjunto dos números reais** que multiplicado por ele mesmo dará um valor negativo, pois o sinal é o mesmo em ambos os fatores da **multiplicação**.

A Raiz de um Radicando Negativo e Índice Ímpar é Negativo.

Em uma multiplicação se todos os sinais forem positivos, obviamente o produto final também será positivo, já se tivermos fatores negativos, se estes forem em quantidade par o resultado será positivo, se forem em quantidade ímpar o resultado será negativo. É evidente que nenhum dos fatores pode ser igual a zero. Então a raiz enésima de **a**, um número real negativo será negativa se o índice for **ímpar**. Se for **par** como vimos acima, não existirá.

Vamos analisar a raiz quinta de menos 32 que se expressa como $\sqrt[5]{-32}$:

$$\sqrt[5]{-32} = b \Leftrightarrow b^5 = -32$$

Como o expoente de **b** é **impar**, ou seja, o número de fatores que representa a potência é impar, para que o resultado seja -32, é preciso que **b** seja **negativo**. Então a raiz de um número negativo e índice impar sempre será um número negativo.

Neste exemplo -2 é o número negativo que elevado a 5 resulta em -32, logo:

$$(-2)^5 = -32 \Rightarrow \sqrt[5]{-32} = -2$$

Note que na potência colocamos o -2 entre parênteses, pois se não o fizéssemos, apenas o 2 estaria elevado à quinta potência. Como o expoente é ímpar, não faria diferença no resultado se não os tivéssemos utilizado, mas isto seria imprescindível se o expoente fosse um número par, para que não houvesse erro de sinal no resultado da potenciação.

A Raiz de um Radicando Positivo também é Positiva

Não importa se o índice é par ou ímpar, em não sendo nulo, a raiz de um radicando positivo também será positiva.

Vamos analisar a √9, que se lê raiz quadrada de nove:

$$\sqrt{9} = b \Leftrightarrow b^2 = 9$$

Logo 3 é o número que elevado ao quadrado dá 9.

Mas você pode também se perguntar:

E se for -3? Se elevarmos -3 ao quadrado também iremos obter nove!

Correto, mas lembra-se da definição da raiz para um radicando positivo?

$$N\bar{a} = b \Leftrightarrow b^n = a \ com \ a \ge 0, \ b \ge 0 \ e \ n \ne 0$$

Tanto o radicando quanto a raiz devem ser positivos, é por isto que não podemos considerar o -3.

LEIS, PRINCÍPIOS, TEORIAS, TEOREMAS, AXIOMAS, FUNDAMENTOS, REGRAS...

A Raiz de um Radicando Nulo também é Nula.

Isto é verdade desde que o índice não seja nulo também.

Exemplo:
$$\sqrt[4]{0} = 0$$
, pois $0^4 = 0 \Rightarrow 0 \cdot 0 \cdot 0 \cdot 0 = 0$.

Propriedades da Radiciação

As propriedades que vamos estudar agora são consideradas no conjunto dos números reais positivos ou nulos, podendo não se verificar caso o radicando seja negativo, pois como sabemos, não existe raiz real de um número negativo.

A Raiz de uma Potência é uma Potência com Expoente Fracionário

Assim como de uma potenciação podemos chegar a uma radiciação, desta podemos chegar a uma **potenciação**:

 $\sqrt[n]{a^m} = a^{\frac{m}{n}} \qquad (a \ge 0 \quad e \quad n \ne 0)$

Exemplo:
$$\sqrt[7]{2^3} = 2^{\frac{3}{7}}$$

Já que **n** não pode ser zero, a partir desta propriedade concluímos que não existe raiz de índice zero. Se **n** fosse zero, o denominador da fração do expoente seria zero, que sabemos não ser permitido.

Mudança de Índice pela sua Multiplicação/Divisão do Expoente do Radicando por um Mesmo número Não Nulo

Se multiplicarmos ou dividirmos tanto o índice do radical, quanto o expoente do radicando por um mesmo número diferente de zero, o valor do radical continuará o mesmo:

$$\sqrt[n]{a^m} = \sqrt[np]{a^{mp}} \qquad (\alpha \ge 0 \quad e \quad p \ne 0)$$

Exemplos:

$$\sqrt[3]{5^2} = \sqrt[3 \cdot 4]{5^2 \cdot 4} = \sqrt[12]{5^8}$$

$$\sqrt[15]{27^{10}} = \sqrt[15 \div 5]{27^{10} \div 5} = \sqrt[3]{27^2}$$

Raiz de uma Potência

A raiz **n** de uma potência de **a** elevado a **m** é a potência **m** da raiz **n** de **a**:

$$\sqrt[n]{a^m} = (\sqrt[n]{a})^m \qquad (a \ge 0 \ e \ n \ne 0)$$

Exemplo:

$$\sqrt[5]{2^3} = (\sqrt[5]{2})^3$$

LEIS, PRINCÍPIOS, TEORIAS, TEOREMAS, AXIOMAS, FUNDAMENTOS, REGRAS...

Produto de Radicais de Mesmo Índice

O produto de dois radicais de mesmo índice é igual à raiz deste índice do produto dos dois radicandos:

$$\sqrt{a} \cdot \sqrt[n]{b} = \sqrt[n]{a \cdot b}$$
 $(a \ge 0 \ e \ b \ge 0 \ e \ n \ne 0)$

Exemplo:

$$\sqrt[3]{8} \cdot \sqrt[3]{27} = \sqrt[3]{8 \cdot 27}$$

Vamos verificar:

$$\begin{cases} \sqrt[3]{8} \cdot \sqrt[3]{27} = 2 \cdot 3 = 6 \\ \sqrt[3]{8 \cdot 27} = \sqrt[3]{216} = 6 \end{cases}$$

Divisão de Radicais de Mesmo Índice

O quociente de dois radicais de mesmo índice é igual a raiz deste índice do quociente dos dois radicandos

$$v_{\overline{a}} \div v_{\overline{b}} = v_{\overline{a} \div \overline{b}}$$
 $(a \ge 0 \ e \ b \ge 0 \ e \ n \ne 0)$

Exemplo:

$$\sqrt[3]{1000} \div \sqrt[3]{125} = \sqrt[3]{1000} \div 125$$

Verificando:

$$\begin{cases} \sqrt[3]{1000} \div \sqrt[3]{125} = 10 \div 5 = 2 \\ \sqrt[3]{1000} \div 125 = \sqrt[3]{8} = 2 \end{cases}$$

Simplificação de Radicais Através da Fatoração

Podemos simplificar e em alguns casos até mesmo eliminar radicais, através da **decomposição do radicando em fatores primos**. O raciocínio é simples, decompomos o radicando em fatores primos por fatoração e depois simplificamos os expoentes que são divisíveis pelo índice do radicando. Vamos simplificar \$\frac{30125}{91125}\$ decompondo **91125** em fatores primos:

Como **91125 = 3^6** 5 podemos dizer que:

$$\sqrt[3]{91125} = \sqrt[3]{3^6 \cdot 5^3} = \sqrt[3]{3^6} \cdot \sqrt[3]{5^3}$$

LEIS, PRINCÍPIOS, TEORIAS, TEOREMAS, AXIOMAS, FUNDAMENTOS, REGRAS...

Repare que tanto o expoente do fator **3**⁶, quanto o expoente do fator **5**³ são múltiplos do índice do radicando que é igual a **3**. Vamos então simplificá-los:

$$\sqrt[3]{3^6} \cdot \sqrt[3]{5^3} = \sqrt[3+3]{3^6+3} \cdot \sqrt[3+3]{5^3+3} = 3^2 \cdot 5 = 45$$

Perceba que através da fatoração de **91125** e da simplificação dos expoentes dos fatores pelo índice do radicando, extraímos a sua raiz cúbica eliminando assim o radical.

Vejamos agora o caso do radical √2205:

Logo **2205 = 3² 5 7²**, então:

$$\sqrt{2205} = \sqrt{3^2 \cdot 5 \cdot 7^2}$$

Como os expoentes dos fatores **3**² e **7**² são divisíveis pelo índice **2**, vamos simplificá-los retirando-os assim do radical:

$$\sqrt{3^2 \cdot 5 \cdot 7^2} = 3 \cdot 7 \cdot \sqrt{5} = 21\sqrt{5}$$

Neste caso o expoente do fator 5 não é divisível pelo índice 2 do radicando, por isto após a simplificação não conseguimos eliminar o radical.

Agora vamos analisar o número $\sqrt[5]{729}$:

Note que **729 = 3^6**, então:

$$\sqrt[5]{729} = \sqrt[5]{36}$$

Neste caso o expoente de 36 não é divisível pelo índice 5, mas é maior, então podemos escrever:

$$\sqrt[5]{36} = \sqrt[5]{35 \cdot 3}$$

Repare que agora o expoente do fator 3⁵ é divisível pelo índice 5, podemos então retirá-lo do radical:

$$\sqrt[5]{3^5 \cdot 3} = \sqrt[5]{3^5} \cdot \sqrt[5]{3} = \sqrt[5+5]{3^5+5} \cdot \sqrt[5]{3} = \sqrt[3+5]{3}$$

Agora vamos pensar um pouco. Após a fatoração tínhamos o radical $\sqrt[5]{3^6}$. O expoente **6** não é divisível por **5**, pois ao realizarmos a divisão, obtemos um quociente de **1** e um resto também de **1**. Pois bem, o **1** do quociente será o expoente da base **3** ao sair o radical. A parte que ainda ficou no radical terá como expoente o **1** do resto. Vamos a alguns exemplos para melhor entendermos a questão: Simplifique $\sqrt[7]{5^{18}}$.

LEIS, PRINCÍPIOS, TEORIAS, TEOREMAS, AXIOMAS, FUNDAMENTOS, REGRAS...

Dividindo **18** por **7** obtemos um quociente de **2** é um resto de **4**, logo fora do radical a base **5** terá o expoente **2**do quociente e a base dentro do radical terá o expoente **4** que é o resto da divisão:

$$\sqrt[7]{5^{18}} = 5^2 \sqrt[7]{5^4}$$

Logo:

$$52\sqrt[7]{54} = 25\sqrt[7]{625}$$

Outro exemplo simplifique $\sqrt[5]{4^{15}}$.

A divisão de **15** por **5** resulta em quociente **3** e resto **0**, pois a divisão é exata, mas não há problema. Seguindo as explicações temos:

$$\sqrt[5]{4^{15}} = 4^{3}\sqrt[5]{4^{0}} = 64\sqrt[5]{1} = 64$$

Veja que quando o é resto for zero podemos eliminar o radical, já que o radicando sempre será igual a **1**, pois todo número natural não nulo elevado a zero é igual a um:

$$\sqrt[5]{4^{15}} = 4^3 = 64$$

Nos casos em que os expoentes de todos os fatores forem menores que o índice do radical como, por exemplo, em $\sqrt[5]{2^3 \cdot 3^4}$, a simplificação não poderá ser realizada.

Fonte: http://www.matematicadidatica.com.br/Radiciacao.aspx

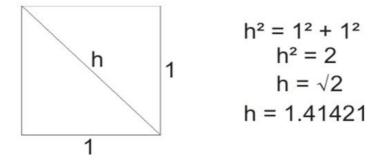
PARA REFLETIR COM OS ALUNOS

VERDADE OU LENDA?

Existe uma lenda a respeito da sociedade pitagórica que torna muito curiosa a história dos números irracionais. Como toda estória (ou historia) bem contada, irei começar exatamente do começo, para a compreensão de todos.

Através do teorema demonstrado por Pitágoras, é possível calcular a diagonal de quadrados. A diagonal divide o quadrado em dois triângulos retângulos, dessa forma podemos afirmar que a diagonal é a hipotenusa, e os catetos são os lados do quadrado. Assim, todo quadrado, isto é, um retângulo de lados iguais, é formado por dois triângulos retângulos. Apesar deste conhecimento, os pitagóricos enfrentaram um pequeno problema: eles não conseguiram calcular a diagonal de um quadrado de lado unitário. Atualmente, pode parecer um cálculo muito simples, mas nem sempre foi assim. O quadrado mostrado abaixo possui lado "1", e a medida da sua diagonal "h" (a hipotenusa dos dois triângulos), de acordo com o teorema, é calculada da seguinte forma:

PARA REFLETIR COM OS ALUNOS



Talvez estejam se perguntando "Qual a dificuldade nisso?". O problema é que a raiz de dois, como mostrado acima, é um número irracional, ou seja, ela não pode ser representada pelos números inteiros ou fracionários: os únicos que os pitagóricos conheciam. A alternativa usada por Pitágoras foi, então, proclamar que alguns comprimentos simplesmente não poderiam ser expressos através de números, atitude um pouco controversa para um filósofo que dizia que o número é o principio de tudo.

Hipaso de Metaponto

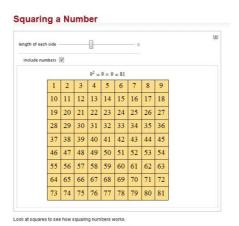
Tal paradoxo foi mantido rigorosamente em sigilo dentro da sociedade pitagórica, exceto por um dos seus seguidores. Segundo a lenda, Hipaso de Metaponto, um seguidor de Pitágoras, misteriosamente, ou convenientemente, morreu afogado após ter falado um pouco demais. Apesar disso, a descoberta dos números irracionais, que ameaçava a doutrina de que tudo podia ser demonstrado através de números, é comumente atribuída a Hipaso. Então, talvez ele quisesse apenas mostrar ao mundo a sua descoberta, mas de qualquer forma acredito que as circunstâncias de sua morte sejam um ótimo assunto para se pensar quando queremos entender o quanto os pitagóricos eram apaixonados pela matemática.

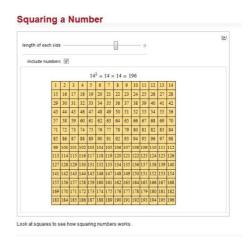
Fonte: http://portalcognoscere.wordpress.com/2011/07/18/os-pitagoricos-e-os-numeros-irracionais/

ATIVIDADES DESENVOLVIDAS PELO PROFESSOR

1ª Aula:

O professor poderá iniciar a aula com as perguntas da seção "Questões Problematizadoras". Para prosseguir com a discussão sobre números quadrados perfeitos e área de um quadrado, o professor solicitará que os alunos através do navegador de Internet do *Laptop* Educacional (*Mozilla Firefox*), [Metasys> Favoritos>Navegador de Internet], explorem o objeto de aprendizagem disponível no site: http://demonstrations.wolfram.com/SquaringANumber/





Trata-se de um quadrado dividido em outros quadrados menores numerados, onde o professor poderá associar a área de um quadrado ao conceito de raiz quadrada. Em seguida o professor solicitará a construção de uma tabela eletrônica no programa *KSpread* [Metasys>aplicativos>F erramentas de Produtividade>suíte de escritório> Planilha Eletrônica] onde os alunos deverão calcular os quadrados dos números até 30, ou se o professor preferir, pode optar por um conjunto maior. Com a tabela já confeccionada, os alunos deverão analisá-la e listar relações, propriedades e padrões. Para finalizar a aula, os alunos deverão debater sobre as propriedades encontradas e o professor intermediará a discussão verificando se de fato as relações ou padrões encontrados são consistentes. Durante essa atividade o professor deverá sempre associar o conceito da radiciação como operação inversa da potenciação.

2ª Aula:

O professor formalizará o conceito de radiciação, apresentando suas propriedades.

3ª Aula:

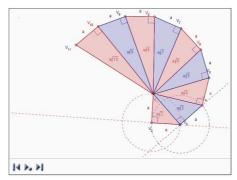
O professor solicitará que os alunos abram o programa KCalc [Metasys>aplicativos>Acessórios>Ut ilitários>Calculadora Científica] e caso os alunos não tenham tido a experiência de trabalhar com uma calculadora científica, o professor deverá apresentar as funções disponíveis na calculadora científica. A relação entre as operações de radiciação e potenciação, principalmente no que diz respeito a expoentes fracionários, pode ser explorada através de exemplos que apliquem as propriedades dessas duas operações. E para finalizar a aula o professor solicitará que os alunos resolvam uma lista de exercícios com aproximações de raízes não exatas ou de potenciações com expoentes fracionários.

TAREFA DOS ALUNOS

- 1ª- Explorar o objeto de aprendizagem;
- 2º- Construir uma tabela com os quadrados dos números de 0 até 30;
- 3º- Analisar a tabela construída;
- 4º- Listar relações, padrões e propriedades dos quadrados dos números da tabela;
- 5ª- Participar do debate com a turma e o professor;
- 6º- Explorar a calculadora científica juntamente com o professor;
- 7ª- Resolver a lista de exercício.

PARA SABER MAIS

O professor poderá visitar o aplicativo abaixo e discutir sobre o significado geométrico dos números irracionais resultantes de raízes não exatas, disponíveis em: http://www.professores.uff.br/hjbortol/car/stepbystep/2007.2/raiz-quadrada-de-um-numero-natural.html

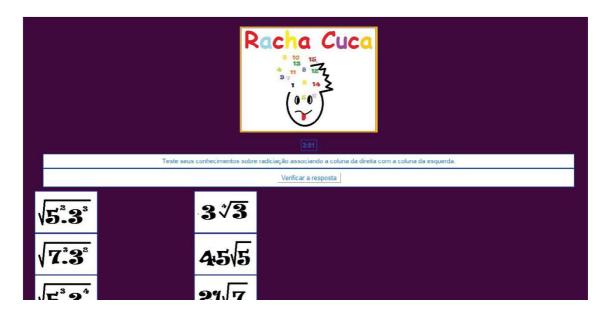


AVALIAÇÃO

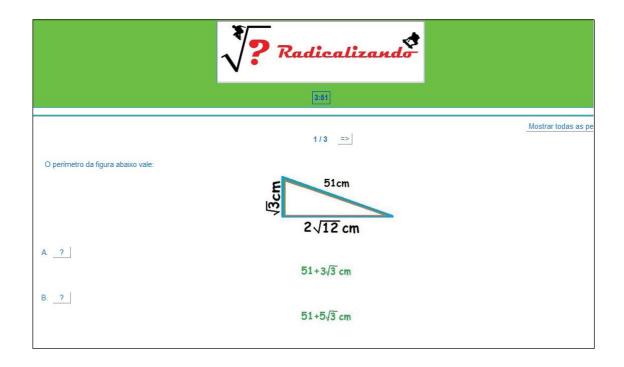
Critérios	Desempenho avançado	Desempenho médio	Desempenho iniciante
Resolver problema com números racionais envolvendo as operações (adição, subtração, multiplicação, divisão, potenciação)			
Efetuar cálculos simples com valores aproximados de radicais.			
Constatar alguma relação entre aspectos observáveis do objeto, semelhanças e diferenças, constâncias em situações, fenômenos, palavras, tipos de texto etc.			

EXERCÍCIOS DE FIXAÇÃO

1. Divirta-se e teste seus conhecimentos sobre as propriedades dos radicais com o jogo **"Racha-cuca"**.



2. Radicalize mostrando como você está fera em radiciação com o jogo "Radicalizando".



EXERCÍCIOS PARA AVALIAÇÕES/// Provinha Brasil • Prova Brasil • PISA e ENEM

1. Observe o gráfico abaixo que representa a planta de um terreno retangular. As medidas estão na mesma unidade de comprimento, o **metro**. Assim, podemos afirmar que o perímetro do terreno vale:

- a) $5\sqrt{3}m$
- b) $\sqrt{39}m$
- c) $2\sqrt{3} + 3 m$
- d) 5 m
- 2. A área do triângulo abaixo vale:



- a) $4\sqrt{3} cm^2$
- b) $3 cm^2$
- c) 6 cm²
- d) $3\sqrt{4} cm^2$
- 3. Uma das propriedades de multiplicação de radicais afirma:

 $\hbox{``Para multiplicar radicais de mesmo ı́ndice, devemos conservar o ı́ndice e multiplicar os radicandos."}$

$$\sqrt{2}.\sqrt{3}.\sqrt{6}$$

Assim, ao aplicarmos essa propriedade na expressão acima, encontramos o seguinte valor:

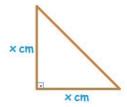
- a) $2\sqrt{3}$
- b) $3\sqrt{2}$
- c) $\sqrt{6}$
- d) 6
- $\frac{3\sqrt{27} + \sqrt{3}}{\sqrt{12}}$

Ao simplificarmos a expressão acima encontramos o seguinte valor:

- a) $\sqrt{3}$
- b) 5
- c) 3√3
- d) $4\sqrt{3}$

EXERCÍCIOS PARA AVALIAÇÕES/// Provinha Brasil • Prova Brasil • PISA e ENEM

5. Qual o valor do x na figura abaixo, sabendo-se que a área do triângulo mede $32cm^2$?



- a) 10 cm
- b) 16 cm.
- c) 8 *cm*.
- d) 15 cm

